
Programming MLE models in STATA1

Andreas Beger

30 November 2008

1 Overview

You have learned about a lot of different MLE models so far, and most of them are available as pre-defined

commands in STATA.2 However, there is a good chance that at some point you will come across a problem

for which there is no pre-defined solution. You might be interested in party choice in situations where

the IIA assumption does not hold and choices are nested. You might be interested in the incidence

of torture, but think that there are countries in which torture occurs but is not reported. You might

need a count model for situation where the truncation point is something other than 0. Many people

at that point will choose the simple expedient of using the next best model for any given situation. For

example, most published articles that look at the number of fatalities in wars use the log of fatalities

in an OLS regression, rather than a count or truncated count model. A more difficult, but also more

appropriate alternative would be to write down whatever process you think generated the data you are

dealing with and derive a likelihood function from it. Let’s say you have done that, i.e. you have written

down a likelihood function for the particular problem you are dealing with. What now? By the end of

this you should roughly know the answer, and looking through the notes you should be able to estimate

(almost) any likelihood function using Stata.

The next section is a quick review of Maximum Likelihood Estimation, and the maximization problem

involved in particular. This helps introduce some of the terminology involved with programming MLE

commands in Stata, but is also generally helpful. The sections after that go into the nuts and bolts of

writing Stata programs for maximum likelihood estimators.

2 Review of Maximum Likelihood Estimation

Say we have magically developed a log-likelihood function with the generic form:

lnL = f (θ) (1)

or in words, where our log-likelihood for the data at hand is a function of θ, where θ is the vector of

parameters in our model. For a logit regression model, this would in more detail look like this:

lnL =

N
∑

i=1

(

yi ln

(

1

1+e−θ

)

+ (1− yi) ln

(

1−
1

1+e−θ

))

(2)

In this logit example, we will probably be interested in estimating µ, the mean of our distribution f (), and

we do so using a vector of coefficients β that includes a constant term and coefficients for several inde-

pendent variables. Unless there is an analytical solution to such a model, we will usually use maximum

likelihood estimation to solve the problem.

1These notes are closely based on Gould, Pitblado and Sribney (2006).
2Quite a few if you think back. . . logit, probit, normal (OLS in MLE), heteroscedastic probit, rare events logit, multinomial logit,

conditional logit, multinomial probit, ordered probit, ordered logit, poisson, negative binomial, hurdle poisson, zero-inflated

poisson, zero-inflated negative binomial, exponential, weibull, log-logistic, generalized gamme, Cox, etc.

1

The idea behind MLE is to find the values of θ, or more specifically in our case to find the values of the

coefficients β, that maximize the log-likelihood for the data we use to estimate the parameters. To do

this, we start with some initial values for our parameters, and adjust them in a way that should result in a

higher log-likelihood, until we have reach the highest log-likelihood value possible (hopefully). To adjust

any single parameter, we need to know which direction to adjust it in (i.e. make it smaller or larger) and

by how much to adjust it. For our vector of parameters, this problem more generally takes the form:

θ̂k+1 = θ̂k +λk∆k (3)

where k indicates that we are in the k-th iteration in our process of finding parameters that maximize

the log-likelihood. In words, we adjust the previous parameter estimates by λk∆k , where ∆ is a vector

telling us which direction to adjust the parameters by, and where λ is a vector that specifies the “step

size”, i.e. by how much to adjust each coefficient. We want to find a ∆ and λ such that the new vector of

parameters results in a higher log-likelihood than we had before (i.e. we want to pick ∆ and λ such that

lnL = f (βk+1) > f (βk).). How can we do this?

What we need is information on the slope(s) of the current point θk (so we know which direction to go),

and also information on how fast the slope is changing at our current point. There are four different

algorithms of doing this in Stata. All of them calculate the direction vector ∆ by using the gradient vector,

which is a vector of first derivatives of the log-likelihood function in respect to each of the parameters:

g (θk) =
∂ lnL

∂θk
(4)

However, in addition to the gradient vector, all four algorithms also use additional information to refine

the direction vector. Using only the gradient vector is not a very good direction finding tool, since it only

tells you whether the log-likelihood is increasing in one direction or not. To further refine the direction

vector, the four algorithms use additional information, and they differ only in what that additional infor-

mation is. They only differ in how they calculate the direction vector ∆, not in how they calculate step

size λ.

2.1 Newton-Raphson

The Newton-Raphson algorithm calculates the direction vector using the the inverse of the negative Hes-

sian matrix, which itself is a matrix of partial second derivatives and cross-derivatives:

H (θk) =
∂2 lnL

∂θk∂θ
′

k

(5)

Specifically, Newton-Raphson calculates the direction vector as:

∆= [−H (θk)]−1g (θi) (6)

As it turns out, calculating the inverse of the negative Hessian is computationally quite intensive, and

thus finding the direction vector is the most complicated part. Calculating a log-likelihood by com-

parison is easy, and so for the stepsize, Newton-Raphson (and the other algorithms) use a much sim-

pler approach: they start with λ = 1, calculate f (θk) and f (θk+1), and keep increasing λ as long as

2

f (θk+1) > f (θk). Sometimes it might go to far, in which case it backs up and decreases λ, until finding an

optimal step size. Once it has found the optimal step size, the algorithm updates the current estimate for

θ and then searches for a new direction vector. It repeats this until a maximum is reached.

2.2 Other algorithms

Because the inverse of the negative Hessian is intensive to calculate, statisticians have developed other

algorithms that use various approximations for the Hessian matrix that are computationally easier to

calculate. In practice, these algorithms will do calculations faster, but because their direction vectors

usually are not as good as Newton-Raphson’s, they will usually also take longer to find a maximum.

Since I don’t have time to write this, you’ll have to take my word that the other three algorithms use

various approximations for the Hessian.

3 Writing your own program in STATA

Stata comes with a lot of predefined statistical models like logit, probit, etc. At first glance, it might seem

that writing your own commands can in no way come close to matching Stata’s predefined commands.

That is not true. Given enough time and effort, you can exactly replicate what Stata’s predefined com-

mands do with your own program, and more importantly, you can write your own commands that match

Stata’s expectations for programs.

To make this a little bit more clear, when you type logit in Stata, you will get something like this:3

. logit y x1 x2

initial: log likelihood = -693.14718
alternative: log likelihood = -722.07698
rescale: log likelihood = -693.11518
Iteration 0: log likelihood = -693.11518
Iteration 1: log likelihood = -497.20157
Iteration 2: log likelihood = -482.37494
Iteration 3: log likelihood = -481.75462
Iteration 4: log likelihood = -481.75293

Logistic regression Number of obs = 1000
LR chi2(2) = 422.72
Prob > chi2 = 0.0000

Log likelihood = -481.75293 Pseudo R2 = 0.3049

--
y | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+--
x1 | 1.164907 .0869981 13.39 0.000 .9943943 1.33542
x2 | 2.163466 .1628737 13.28 0.000 1.844239 2.482692

_cons | -2.210133 .1852701 -11.93 0.000 -2.573256 -1.84701
--

3Actually you would not get the first three lines in the output and the output would start with “Iteration 0. . . ”, but many other

commands will give you three lines like that.

3

By the end of this lecture, you should understand what all the lines showing you log-likelihoods mean,

and we will replicate these results using our own command for Stata.

To write your own estimation command in Stata, you can more or less follow this sequence of steps

shown below. They use the easiest method for writing your own commands (lf), and it works with most,

but not all, likelihood functions. These steps provide an outline for the rest of these notes, although there

will be a few major excursions into other areas that you need to know or that are useful to know.

1. Make sure you can use the lf method. (3.1)

2. Write a program that calculates likelihood values. (3.2)

3. Make sure the program works correctly. (3.4)

4. Specify a model. (3.5)

5. Set or search for starting values (optional). (3.6)

6. Maximize. (3.7)

7. Check for errors. (3.8)

Stata has a set of commands like ml model and ml maximize that make all of this a lot easier, so

throughout the following discussion I will introduce these commands when appropriate. There will

also be two lengthy tangents on programming in Stata and on generating “synthetic” data that follows a

known data-generating process.

3.1 Make sure you can use the lfmethod.

We have not talked about what the lf method is yet–roughly, it is the easiest way of programming your

own MLE commands into Stata. In order to be able to use this method, your likelihood function must

meet the linear-form restriction that:

lnL = ln l1 + ln l2 + . . .+ ln lN (7)

or in words, the overall log likelihood must equal the sum of log likelihoods for each individual observa-

tion in your data. Examples of likelihood functions that do not meet this restriction include those that

model groups of observations, rather than individual, independent observations, like conditional logit.

In those cases, the easiest method to use is d0.

3.2 Write a program that calculates likelihood values.

The first practical step towards writing a new regression command for Stata is to write a specific type of

program that calculates log likelihood values for the observations in your estimation sample. Essentially

this is how you define the likelihood function. The program receives your model specification as input

(i.e. what is the dependent variable, what are you explanatory variables, at minimum) and provides

specific l nL values as output:

4

program define logit2_lf
[input for μ_i and other parameters if used]
[output is $\ln L_i$ at a minimum]
end

Note that this particular program literally calculates a lnL value for each individual observation in the

sample. The rest of the ml commands can take care of summing the log-likelihoods.

So, to do this for a logit regression model, we start with the log likelihood function:

lnL =

N
∑

i=1

(

yi ln

(

1

1+e−xiβ

)

+ (1− yi) ln

(

1−
1

1+e−xiβ

))

(8)

We essentially need to put this function into a program that, given a list of variables and coefficients (or

just a constant term), literally creates a new variable containing the resulting log-likelihood values for

each observation. So we might write a program like this:

program define logit2_lf
version 10.1
args lnf xb
tempvar lnlj
qui {

gen double ‘lnlj’ = ln(invlogit(‘xb’)) if $ML_y1 == 1
replace ‘lnlj’ = ln(invlogit(-‘xb’)) if $ML_y1 == 0
replace ‘lnf’ = ‘lnlj’
}

end

Most of this program is stuff that is not directly related to actually calculating the log-likelihood values.

All of that is done by the two lines in the middle that generate and replace lnlj.

So what is going on in this program? The first line simply tells Stata that we want to create a new program

(i.e. a new command) called logit2_lf. We can name our program anything we want, as long as

it does not conflict with existing Stata commands (more below). The next line defines which version

of Stata I am using–10.1 in this case. This is important for backwards comparability. The command

args (short for arguments) defines local names by which we want to refer to the input our program

receives. This just makes it slightly easier to remember what is what. The first argument our command

receives is labelled lnf, and the second xb. Next, we define a temporary variable called lnlj that will

hold log-likelihood values for individual observations. Generally, using temporary variables means that

Stata will drop the variable automatically when the program concludes, and since we do not care about

individual lnL values, we might as well do this. Actually we could leave this step out since the rest of

Stata’s ml routines would have done this anyways, but if we ever want to move on to writing a d0 version

of this program, we will need this. Now we can actually calculate the log-likelihood. I could have just

put equation 8 into one line and calculate all log-likelihood values at once. Generally though, that will

probably increase the chances that there is an error, so it’s always a good idea to split problems into

small parts. To that end, the program uses a couple of shortcuts. First, we calculate log-likelihood values

first for observations where yi = 1, then for when yi = 0. When you use Stata’s ml routines, they will

automatically create a global macro that tells you whether that is the case or not–$ML_y1.4 Note, and

4Global macro’s are generally referenced by putting a $ in front of their name, and the name ML_y1 in this case tells us that

this is the first dependent variable in the currentml problem. Sometimes you can have multiple dependent variables, in which

case they would be referenced by $ML_y2 and so on.

5

this is important, that when we generate the temporary variable holding our log-likelihoods, we specify

that it is to be stored as double format. This is more precise than Stata’s default, and not doing this is an

easy way of creating regression models that do not converge. Second, rather than calculating the logit

function by hand, we can use Stata’s built-in function invlogit. Again, this reduces the chances of a

coding error. Finally, rather than calculating 1− 1
1+e−xi β

, we note that this is equal to 1
1+exi β

. This is simpler

to code and incidentally also increases accuracy. Finally, we replace lnf to equal lnlj. When you write

programs to use with ml and method lf, you must produce lnf as the final output. Because generating

and replacing variables in Stata produces output, we put quietly around this part of the program to

suppress it.

3.3 Some notes on programming in Stata

The program command is generally useful for writing commands that you intend to use a lot. The

program above is only written so that the other ml commands can use it, but you can also easily write

your own. For example:

program define hello
version 10.1
di as result _new(1) "Hello World"

end

A couple of notes on this. You can name a program/command anything you want as long as it does

not conflict with an existing Stata command. There are many commands in Stata that you either never

use or that are internal (used by other programs), so it is usually a good idea to check (although Stata will

produce an error if the name is taken already too) by using the commandwhich followed by the program

name. Also, the first line in the program specifies what version of Stata I am using. This is important for

backwards comparability. For example, if the syntax for thedisplay command changes in some future

version of Stata, the program will potentially not work if the version is not specified. However, if I am

using Stata 12, the program here will still work because Stata 12 will know that this program was written

for Stata 10.1, and that it should use Stata 10.1’s commands. Anyways, the command will produce the

following output when you type hello in Stata’s command prompt:

. hello

Hello World

That probably is not very useful, and in general, you will probably prefer to write programs that can also

receive input. By default, you can specify input for a program and Stata will store the results as local

macros, that are generically numbered from 0:

program define write
version 10.1
di as result _new(1) "‘0’"
di as result "Element1: ‘1’; Element2: ‘2’"

end

6

. write Hallo Welt

Hallo Welt
Element1: Hallo; Element2: Welt

That is great, but for programs that have more complicated input relying on Stata’s default is not the best

option. Instead, we can use the syntax command to explicitly define what sort of input our command

needs. For example, throughout this semester you have had to present quantities of interest in the same

format, with a mean and 95% confidence interval. Most of you did that by using the sum and centile
commands, which does the job but is also somewhat crude. Instead you could use this program:

program define qici
version 10.1
syntax varname, Level(cilevel)
tempname ll ul mean
local ll = round((100 - c(level))/2 , .01)
local ul = round((100 + c(level))/2 , .01)
qui sum ‘varlist’
local mean = round(r(mean) , .001)
_pctile ‘varlist’ , p(‘ll’ ‘ul’)
local ll = round(r(r1) , .001)
local ul = round(r(r2) , .001)
di _new(1) as result "‘c(level)’ % CI (percentile-based) for ‘varlist’:"
di _col(5) as result "‘mean’ [‘ll’ to ‘ul’]"

end

The terms c(level), r(r1), and r(r2) refer to Stata macros that are generated by other programs,

Stata default setup and the _pctile command respectively in this case. This is the output you will get

from using it:

. qici x1

95 % CI (percentile-based) for x1:
1.962 [.108 to 3.89]

Wonderful, but as you can notice, the work needed to create this program would probably only have been

worth it at the beginning of the semester. Anyways, what do you do with programs? There are essentially

three options: (1) you can enter the program manually when you are playing around with Stata, (2) you

can put the program in a do file, (3) you can put the program in an ado file. Option 1 is utterly useless and

defeats the purpose of programming your own commands. Putting programs in your do files is a little

more sensible. Note that a program and all of its subroutines (i.e. other programs that that program calls

on) will have to be defined before the first time the actual command is issues. Finally, you can also save

the text of a program as an ado file, and put it in a directory where Stata can find the command. That is

how the Clarify and BTSCS packages work. Type sysdir to see the directories that Stata is looking in;

C:\ado\personal is a good starting point.

7

3.4 Specify a model.

After you have defined how the likelihood is calculated, you can specify a model using the ml model
command. The basic syntax is:

ml model method progname (eq1) ..., options

The first argument specifies which method the program uses to calculate the likelihood values. There are

four different methods: lf, d0, d1, and d2. The most important difference between these methods is in

the information you provide Stata when it calculates the likelihood values. Thelfmethod is the easiest–

your program only includes the log likelihood function and you let Stata calculate numerical derivatives

to get the gradient vector and Hessian matrix. This method is by far the easiest to code, and in most cases

is sufficient.

The next three methods include increasingly more information on the gradient vector and Hessian. The

d0 method also only requires a log likelihood function, but it has somewhat more complicated syntax

because instead of letting ml sum individual ln likelihood values, your program does so manually. This

is useful for certain types of likelihood functions that otherwise will not work with method lf. In d1
and d2 your program specifies functions for the gradient vector and gradient vector as well as Hessian

respectively. Stata has complicated syntax to do this, i.e. it is not just as straightforward as entering the

equations for each of these. The subroutines Stata adds are not just meant to complicate things, but to

take account of several common mistakes that might occur if you used regular commands to calculate

certain things (e.g. summing likelihood values in your dataset without dropping observations that are

not in the estimation subsample). Ultimately there are only two reasons to use a d0, d1, or d2 method:

(1) the lf method is no appropriate for you likelihood function, or (2) you are working your way up to a

program that uses the d2 method. The lf method is faster and more accurate (see the bit above about

machine precision) than either thed0 or d1method, but thed2method is the fastest and most accurate.

Thus for commands that are commonly used like logit and probit it may be worth the extensive coding

effort to produce a faster and more accurate program.

The main point to remember is that you generally will want to use the lf method. It is the simplest to

program, and fairly fast and accurate. Furthermore, all four of these methods build on one another, so

even if you were interested in using the d2 method, something close to the lf method would be your

starting point anyways.

After you specify what method to use, you need to identify the program that calculates the log-likelihood

values. In case it is not obvious, your program needs to match the method you are using, i.e. if you are

using the d1 method your output will have to include the log-likelihoods and values for the gradient

vector.

The final step (unless you care about specifying options, which we do not at this point) is to specify your

actual model. Stata does this by breaking the command up into sections for different equations. Each

equation is your model specification for the parameter(s) you are estimating. In what is about to become

our running logit example, we will only estimate µ, the mean of our logit distribution. Sometimes you

are estimating more than one parameter though. For example, in a heteroscedastic probit model, we not

only estimate the mean µ of a logit distribution, but also its variance σ. Each of those parameters would

have a separate equation for it. By the way, you can name equations something other than the Stata

default of eq1, eq2, etc. by putting the equation name followed by a colon before the actual equation.

8

Also, Stata by default includes a constant term unless you specify in the options that you do not want

one. Anyways, our command would look something like this:

ml model lf logit2_lf (y = x1 x2)

We are going to model the binary outcome y as a function of two explanatory variables, x1 and x2. Stata

will also automatically include a constant term, unless we tell it not to.

3.5 Make sure the program works correctly.

Even with a simple likelihood function however, there is a good chance that something will go wrong

because we made a coding mistake. Thus it is a good idea to debug first. Stata provides a tool for this, the

ml check command.

. ml check

Test 1: Calling logit2_lf to check if it computes log likelihood and
does not alter coefficient vector...
Passed.

Test 2: Calling logit2_lf again to check if the same log likelihood value
is returned...
Passed.

Test 3: Calling logit2_lf to check if 1st derivatives are computed...
test not relevant for method lf.

Test 4: Calling logit2_lf again to check if the same 1st derivatives are
returned...
test not relevant for method lf.

Test 5: Calling logit2_lf to check if 2nd derivatives are computed...
test not relevant for method lf.

Test 6: Calling logit2_lf again to check if the same 2nd derivatives are
returned...
test not relevant for method lf.

--
Searching for alternate values for the coefficient vector to verify that
logit2_lf returns different results when fed a different coefficient vector:

Searching...
initial: log likelihood = -<inf> (could not be evaluated)
searching for feasible values +

feasible: log likelihood = -911.81381
improving initial values+...
improve: log likelihood = -828.12024

continuing with tests...
--

9

Test 7: Calling logit2_lf to check log likelihood at the new values...
Passed.

Test 8: Calling logit2_lf requesting 1st derivatives at the new values...
test not relevant for method lf.

Test 9: Calling logit2_lf requesting 2nd derivatives at the new values...
test not relevant for method lf.

--
logit2_lf HAS PASSED ALL TESTS

--

Test 10: Does logit2_lf produce unanticipated output?
This is a minor issue. Stata has been running logit2_lf with all
output suppressed. This time Stata will not suppress the output.
If you see any unanticipated output, you need to place quietly in
front of some of the commands in logit2_lf.

-- begin execution
-- end execution

Most of this test is self explanatory. The last section at the end runs the command without suppressing

any output. Had we not used the quietly command in our program logit2_lf, this section might

display unwanted output such as “xxx missing values generated”.

What if the test returns an error? You can go back through the program and see if there are any obvious

errors. Sometimes you may not be able to find one though. In those situations, it can be useful to use the

ml trace command. There is a regular trace command in Stata (invoked by typing set trace on)

that will show you very detailed output of what is going on in the background. Because theml commands

themselves to things in the background though, it is better to use the ml trace command. This will

show you, line by line, how commands in your program are executed, and what output they produce.

Usually this will let you pin a problem down to a specific line in your program, which makes it much

easier to find mistakes.

Note that this test will only check to see whether our program calculates log-likelihood values, not whether

these log-likelihood values are correct. If there is a syntax error in our program or in the likelihood func-

tion we entered in it, this test might catch it. However, it will not catch errors that lead our program to

calculate false log-likelihood values. More on this issue later.

3.6 Set or search for starting values.

Now that we have defined the problem at hand, and checked the program for obvious errors, we could

just type ml maximize and let Stata deal with the rest. We would get output like this:

. ml maximize

initial: log likelihood = -693.14718
alternative: log likelihood = -722.07698
rescale: log likelihood = -693.1152

10

Iteration 0: log likelihood = -693.1152
Iteration 1: log likelihood = -482.44656
Iteration 2: log likelihood = -481.75499
Iteration 3: log likelihood = -481.75293
Iteration 4: log likelihood = -481.75293

[rest of output omitted]

This is very similar to what happens when you use a regular Stata regression command. Actually there

are two different things going on here though. When you type ml maximize right after issuing the ml
model command, ml will in addition also search for initial starting values. That is what the first three

lines in the output are about: ml calculates the log-likelihood for the initial starting values (usually zero),

looks for alternative starting values, and then rescales those alternative starting values before starting the

maximization.

Let’s go back one step. After issuing the ml model command again, we can type ml query or ml
report to look at the current maximization problem defined. The command ml query shows you

the problem definition (i.e. how many equations, what are the varibles) and also the current starting

values for each coefficient:

. ml query

Method: lf
Program: logit2_lf
Dep. variable: y
1 equation:

eq1: x1 x2
Search bounds:

eq1: -inf +inf
Current (initial) values:

(zero)

The command ml report does not show you the problem definition, but it does provide exact values

for the current coefficient vector, gradient vector, negative Hessian, and maximization direction:

. ml report

Current coefficient vector:
eq1: eq1: eq1:
x1 x2 _cons

r1 0 0 0

Value of log likelihood function = -693.14718

Gradient vector (length = 264.7477):
eq1: eq1: eq1:
x1 x2 _cons

r1 236.6323 118.6613 4

Negative Hessian matrix (concave; matrix is full rank):
eq1: eq1: eq1:
x1 x2 _cons

11

eq1:x1 1265.164
eq1:x2 -15.48785 84.51683

eq1:_cons 490.5204 -4.911229 250.0011

Steepest-ascent direction:
eq1: eq1: eq1:
x1 x2 _cons

r1 .8938029 .4482054 .0151087

Newton-Raphson direction (length before normalization = 2.23146):
eq1: eq1: eq1:
x1 x2 _cons

r1 .3513312 .654672 -.6693063

As you can see, the starting values for our coefficients right now are all zero. We can do better than that

by using the ml search command, which does exactly the same as the maximization command did

for us above:

. ml search
initial: log likelihood = -693.14718
improve: log likelihood = -693.14718
alternative: log likelihood = -722.07698
rescale: log likelihood = -693.1152

. ml query

Method: lf
Program: logit2_lf
Dep. variable: y
1 equation:

eq1: x1 x2
Search bounds:

eq1: -inf +inf
Current (initial) values:

eq1:_cons .015625
remaining values are zero

lnL(current values) = -693.1152

Usually you can just rely on Stata to find good starting values by itself. If you feel like playing around

though, or if you have a good guess at what the coefficient estimates should be, you have two other

options to set starting values.

The first is by using theml plot command, which graphs the log-likelihood function against one of the

coefficients in your model:

. ml plot x1

reset x1 = .2 (was 0)
log likelihood = -670.75096 (was -693.14718)

Note that this automatically changed the starting value for βx1 from 0 to 0.2. You can do the same for

each of the other variables. Since the overall log-likelihood depends on all three coefficients in our

12

Figure 1: Graph of log-likelihood values against x1

−
14

00
−

12
00

−
10

00
−

80
0

−
60

0
lo

g
lik

el
ih

oo
d

−1 −.5 0 .5 1
x1

model, when you plot a coefficient and it’s starting value is changed, the plots for all other coefficients

will change as a result. Technically, at least in some cases, you could “maximize” a model by plotting

each of the coefficients over and over again. Mostly this is just for entertainment value though.

Potentially somewhat more useful is manually setting the starting values. If we had a good idea of what

our coefficient values should be, roughly, we could explicitly specify our guesses as the starting values:

. ml init 1 2 -2, copy

. ml query

Method: lf
Program: logit2_lf
Dep. variable: y
1 equation:

eq1: x1 x2
Search bounds:

eq1: -inf +inf
Current (initial) values:

eq1:x1 1
eq1:x2 2
eq1:_cons -2

Typically you do not know what your coefficients roughly are though. This command can however still be

useful when you have a problem at hand. If your model has problems converging (more on this later), or

if you suspect that there are local maxima or something like that, you can try specifying different starting

values and check if the coefficients remain the same.

3.7 Maximize.

In most cases, after you have specified a model, you can just go ahead and maximize, which is done with

the ml maximize command:

13

. ml maximize

initial: log likelihood = -693.14718
alternative: log likelihood = -722.07698
rescale: log likelihood = -693.1152
Iteration 0: log likelihood = -693.1152
Iteration 1: log likelihood = -482.44656
Iteration 2: log likelihood = -481.75499
Iteration 3: log likelihood = -481.75293
Iteration 4: log likelihood = -481.75293

Number of obs = 1000
Wald chi2(2) = 243.54

Log likelihood = -481.75293 Prob > chi2 = 0.0000

--
y | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+--
x1 | 1.164907 .0869987 13.39 0.000 .9943932 1.335422
x2 | 2.163466 .1628748 13.28 0.000 1.844237 2.482695

_cons | -2.210133 .1852712 -11.93 0.000 -2.573258 -1.847008
--

That is slightly different from the output you get when you use Stata’s logit command–there is not model

title, the results show a Wald χ2 test rather than a likelihood-ratio test, and there is no Pseudo-R2. The

first two we can easily fix by specifying some options on theml model command (the LR test is between

our full model and a constant-only model, so we run that first to get a log-likelihood value):

. ml model lf logit2_lf (y =), maximize

initial: log likelihood = -693.14718
alternative: log likelihood = -722.07698
rescale: log likelihood = -693.1152
Iteration 0: log likelihood = -693.1152
Iteration 1: log likelihood = -693.11518

. ml model lf logit2_lf (y = x1 x2), title(Logistic regression) lf0(1 ‘e(ll)’)

. ml maximize

initial: log likelihood = -693.14718
alternative: log likelihood = -722.07698
rescale: log likelihood = -693.1152
Iteration 0: log likelihood = -693.1152
Iteration 1: log likelihood = -482.44656
Iteration 2: log likelihood = -481.75499
Iteration 3: log likelihood = -481.75293
Iteration 4: log likelihood = -481.75293

Logistic regression Number of obs = 1000
LR chi2(2) = 422.72

Log likelihood = -481.75293 Prob > chi2 = 0.0000

--
y | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+--

14

x1 | 1.164907 .0869987 13.39 0.000 .9943932 1.335422
x2 | 2.163466 .1628748 13.28 0.000 1.844237 2.482695

_cons | -2.210133 .1852712 -11.93 0.000 -2.573258 -1.847008
--

Minus the Pseudo-R2, that is exactly what using Stata’s logit command produced.

3.8 Check for errors.

In this example, everything went smoothly, and we had no convergence problems. In practice, especially

with more complicated likelihood functions, you will usually get difficulties. There are a couple of notes

in the output that can give you and indication that there might be problems. These are the most common

indications you will see:

initial: log likelihood = -<inf> (could not be evaluated)
...
Iteration #: log likelihood = -482.44656 (not concave)
...
Iteration #: log likelihood = -481.75293 (backed up)

The first line more or less just shows you that the initial starting values (default is zero) were just so

incredibly bad that the resulting log-likelihood was too small for Stata to keep track of it. Usually this is

not an issue, although you might want to manually set different starting values next time.

The second line shows that at the current position in the parameter space, −H (θi) is not invertible. In

words, given the current vector of coefficient estimates, some part of the gradient vector appears to be

zero, like in a ridge, saddle point, or flat section. Usually this is not because the actual likelihood function

has these features (nice likelihood functions do not), but because the slope is so small that Stata cannot

distinguish it due to roundoff error. So Stata uses different mechanisms to determine which direction to

go in. This is not a problem unless it occurs in the last few iterations, where it might indicate convergence

problems.

The third line indicates that Stata backed up multiple times in the original step it took. Given a direction

and step size, Stata expects the log-likelihood for the new location to be higher than that for the old

location, or formally, it expects that f (βk) = f (βk−1 +λk−1∆k−1) > f (βk−1), where f (x) indicates the

log-likelihood function. If that is not the case, it decreases θk−1, or the step size, until the new log-

likelihood is satisfactory. Again, this is not a problem if it occur early on in maximization, but could

indicate convergence problems if it happens later on.

Another way to check for potential convergence problems is to graph how the log-likelihood was maxi-

mized using the command ml graph. Figure 2 shows the result. The graph on the left shows conver-

gence for the model we just maximized, and the result looks very good. You want the slope in the last few

iterations to approach zero (indicating we are close to a maximum), and it does in our case. The graph

on the right is made up, but shows what bad convergence would look like–the slope of the line is not

even close to zero in the last few iterations, indicating that we have not yet reached a maximum.

15

Figure 2: Graphing convergence

−
70

0
−

65
0

−
60

0
−

55
0

−
50

0
ln

 L
()

0 1 2 3 4
Iteration number

−
70

0
−

65
0

−
60

0
−

55
0

−
50

0
−

45
0

ln
L

0 1 2 3 4 5
iteration

3.9 What to do with convergence problems.

First, if there is a convergence problem or you suspect that there is one, you should disregard any results

you get. Second, you can try to fix the convergence problem. The best problem to have is that something

is wrong with your log-likelihood function or how you coded it. So if you have constant convergence

problems, you might want to go back and check them (especially the coding, since it is easy to make small

but significant mistakes) for accuracy. Sometimes you might just be dealing with a difficult maximization

problem even though your likelihood function itself is sound and implemented well. There are three

basic solutions to this in Stata. You should try all three of them (in any combination) to see if your final

results agree (they should).

First, you can try using a different maximization routine. Newton-Rhapson is the default and usually

works well, but sometimes is may not handle a particular likelihood function very well. To switch likeli-

hood functions, you have to specify the technique() option for the ml model command, with the

possible choices being nr, bhhh, dfp, and bfgs. Newton-Raphson is the default. You can also switch

between different algorithms and tell Stata after how many iterations to switch:

ml model ... , tech(bhhh 2 bfgs 2 nr 5)

When you type ml maximize, this would lead Stata to use BHHH for 2 iterations, use BFGS for 2 itera-

tions, use Newton-Raphson for 5 iterations, and repeat from start until convergence is achieved.

Second, you can specify the difficult option for the ml maximize command. This causes Stata

to undertake some additional computations involving the negative Hession matrix (additional com-

putation = slower) that may help for difficult maximization problems. Simply type ml maximize,
difficult to do this.

Third, you can try setting different starting values, as you saw above.

16

4 Syntax and ado files.

Everything so far has been contained in a do file which defined each program before it was called in

the command prompt. Alternatively, we can write and ado file and place it somewhere Stata can find

it. Most of the work in writing ado files for estimation commands is in parsing syntax. To that end,

Stata estimation commands typically have at least two ado files–one for parsing syntax, and another that

contains the log-likelihood program. For example, if you look at the ado file for Stata’s logit command

(logit.ado), you will find a very complicated file whose sole purpose is to parse syntax and display

results. It has no log-likelihood function or anything like that. So if we want to put our logit command

into a separate do file, we can do the same by (1) putting our log-likelihood program in an ado file named

“logit2_lf.ado”, and (2) by creating a new, syntax-parsing “logit2.ado”. The later, in a very sim-

ple version, looks like this:

program logit2
version 10.1
syntax varlist [if] [in] [, robust]

// Separate the d.v. from i.v.(s).
gettoken y xb : varlist

// Set type of vce to estimate (i.e. oim or robust).
local vcetype = "oim"
if "‘robust’" != "" {

local vcetype = "robust"
}

// Fit constant-only model for LR Test.
qui ml model lf logit2_lf (‘y’ =), maximize

// Specify and fit full model.
ml model lf logit2_lf (‘y’ = ‘xb’) ///

‘if’ ‘in’ ///
, title(Logistic) lf0(1 ‘e(ll)’) vce(‘vcetype’)

ml maximize
end

This program parses the variable list to get a dependent variable and explanatory variables, it works with

the if and in options, and it also lets us specify whether we want robust standard errors. Note that

it additionally incorporates the likelihood ratio test against a constant-only model that we used above.

Now if we place the two ado files we created in a directory Stata can find, we can open Stata and estimate

our model using the command logit2:

. logit2 y x1 x2

initial: log likelihood = -693.14718
alternative: log likelihood = -722.07698
rescale: log likelihood = -693.1152
Iteration 0: log likelihood = -693.1152
Iteration 1: log likelihood = -482.44656
Iteration 2: log likelihood = -481.75499
Iteration 3: log likelihood = -481.75293

17

Iteration 4: log likelihood = -481.75293

Logistic Number of obs = 1000
LR chi2(2) = 422.72

Log likelihood = -481.75293 Prob > chi2 = 0.0000

--
y | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+--
x1 | 1.164907 .0869987 13.39 0.000 .9943932 1.335422
x2 | 2.163466 .1628748 13.28 0.000 1.844237 2.482695

_cons | -2.210133 .1852712 -11.93 0.000 -2.573258 -1.847008
--

Obviously this would be much more useful had we not just replicated an existing Stata command. But at

least I know that the ado files are correct (assuming Stata is correct with it’s logit command).

5 Simulation

I mentioned above that there are some errors that Stata does not pick up because they are not syntax

errors. One way of finding such errors is through simulation: generate junk (“synthetic”) data that follow

a data-generating process that is known to you, meaning that you also know what the true coefficient

values of a fully specified model are, and then estimate the corresponding maximum-likelihood esti-

mator. The estimated coefficients should asymptotically be unbiased, i.e. as your sample size gets very

large your estimated coefficients should be very close to the “true” values that you know because you

generated the data using them.

As it turns out, the data I have used for the example so far was generated in that way (hence the nice

convergence), using this program:

program define syndata
version 10.1
args obs
qui {

set obs ‘obs’
gen x1 = uniform()*4
gen x2 = uniform()*2 - 1
gen e = logit(uniform())
scalar b0 = -2
scalar b1 = 1
scalar b2 = 2
gen l_y = scalar(b0)+scalar(b1)*x1+scalar(b2)*x2+e
gen pr_y = invlogit(scalar(b0)+scalar(b1)*x1+scalar(b2)*x2+e)
gen y = (pr_y>=0.5) // (l_y>=0) produces the exact same.

}
end

The program accepts requires that you specify how many observations you want there to be in your

new junk dataset, and then creates data that follows the dgp y = f (−2 + 1 × x1 + 2 × x2), where x1 is

uniformly distributed from 0 to 4, and x2 is uniformly distributed from −1 to 1. By the way, the error

18

term needs to be logistically distributed for this to work. With a normally distributed error term we get a

data-generating process appropriate for probit.

Since we know what the true coefficient values should be, we can now see if there are errors by checking

whether our estimated coefficient values are close to what they should be (since MLE is only asymptoti-

cally unbiased and we have randomly-generated error, we can expect some divergence). They have been

so far, and if we increase the number of observations, they get closer.

. clear

. syndata 100000

. logit y x1 x2

Iteration 0: log likelihood = -69314.606
Iteration 1: log likelihood = -51326.404
Iteration 2: log likelihood = -50167.294
Iteration 3: log likelihood = -50130.593
Iteration 4: log likelihood = -50130.536

Logistic regression Number of obs = 100000
LR chi2(2) = 38368.14
Prob > chi2 = 0.0000

Log likelihood = -50130.536 Pseudo R2 = 0.2768

--
y | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+--
x1 | .9950037 .007789 127.74 0.000 .9797375 1.01027
x2 | 1.992261 .0156321 127.45 0.000 1.961623 2.0229

_cons | -1.994104 .0174458 -114.30 0.000 -2.028297 -1.959911
--

References

Gould, William, Jeffrey Pitblado and William Sribney. 2006. Maximum Likelihood Estimation with Stata.

3rd ed. College Station, TX: Stata Press.

19

	1 Overview
	2 Review of Maximum Likelihood Estimation
	2.1 Newton-Raphson
	2.2 Other algorithms

	3 Writing your own program in STATA
	3.1 Make sure you can use the lf method.
	3.2 Write a program that calculates likelihood values.
	3.3 Some notes on programming in Stata
	3.4 Specify a model.
	3.5 Make sure the program works correctly.
	3.6 Set or search for starting values.
	3.7 Maximize.
	3.8 Check for errors.
	3.9 What to do with convergence problems.

	4 Syntax and ado files.
	5 Simulation
	References

