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The Minorities at Risk (MAR) Project collects data on approximately 300 ethnic groups and
is one of the few data sets on ethnic groups. However, it suffers from selection bias since
it collects data on groups that are deemed to be “at risk”, andconsequently its use has been
limited. However, while the selection bias in MAR limits thetypes of inferences that can
be drawn using it and distorts estimates of the causal effectof variables, causal inferences
made using MAR are not fundamentally flawed. The reason is that the selection bias in
MAR will likely weaken coefficient estimates and inflate standard errors, thus providing
harder hypothesis tests and a conservative bias that increases the chances that we falsely
reject true hypotheses.
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1 Introduction

“The Minorities at Risk (MAR) Project is a university-basedresearch project that monitors
and analyzes the status and conflicts of politically-activecommunal groups in all countries
with a current population of at least 500,000.”1 Communal groups are considered to be
politically active or “at risk” by either of the following criteria: (1) “the group collectively
suffers, or benefits from, systematic discriminatory treatment vis-a-vis other groups in a
society”, or (2) “the group is the basis for political mobilization and collective action in
defense or promotion of its self-defined interests2”. These selection criteria for minority
group inclusion lead to selection bias and the consequent problems for any type of research
that attempts to generalize beyond minorities that are at risk.

In regard to the two forms of inference discussed in King, Keohane and Verba (1994), de-
scriptive and causal inference, the selection bias in MAR isa major problem for descriptive
inferences, but not necessarily for causal inferences. Descriptive inferences drawn from the
sample in MAR are not generalizable to the population of ethnic groups in the world if the
selection process in MAR is correlated with whatever dependent variable we are interested
in (King, Keohane and Verba 1994, 141). As long as the population we are trying to gener-
alize to is something other than the set of minorities at risk, MAR data, without some type
of correction, will potentially lead to biased descriptiveinferences.

Causal inferences are probably the more common type of inference that empirical research
is interested in making. Because of the selection issue in MAR, many quantitative re-
searchers reject the use of its data for the study of ethnic conflict, rebellion, protest, and
similar topics. For example, Fearon (2003, 196) presents analternative and more inclusive
set of ethnic groups that was motivated in part because of theselection bias in MAR. Hug
(2003) develops an alternative estimator that may mitigatesome of the selection bias in
MAR and similar datasets, but in either case the implicationis that it is inappropriate to
just use data like MAR without considering the selection bias. I will present the results
of several simulations below to show that while the selection bias certainly is unfortunate,
and limits the types of inferences we can draw,the selection bias in MAR does not fun-
damentally undermine a researcher’s ability to make valid causal inferences using MAR
data. More specifically, the simulations presented here suggestthat in applied research us-
ing MAR data, the selection bias will influence causal inferences in two ways: (1) it will
attenuate coefficient estimates, i.e. weaken estimated causal effects (King, Keohane and
Verba 1994), and (2) disproportionately increase standarderrors even after reduced sample
sizes are taken into account.
1From the MAR website at <http://www.cidcm.umd.edu/mar/>.Accessed 15 February 2008.
2From the MAR website. <http://www.cidcm.umd.edu/mar/about.asp>. 15 February 2008.
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2 Nature of selection process in MAR

Selection bias is a result of nonrandom selection. We have some population of units that we
wish to study, i.e. all communal groups in all countries in the world, but we lack data for
all of these groups and rather study a sample drawn from that population. No one knows
exactly how many ethnic groups there are in the world (maybe acouple thousand), but all
lists of ethnic groups are samples of this larger populationof ethnic groups.3 Fearon (2003)
has more than 800 groups in his list, whereas MAR collects data on around 300. The
problem of selection bias arises if the process used to include groups in the MAR sample
is systematically related to variables that are of interestto a particular research project
(King, Keohane and Verba 1994, 128-149). Since the Minorities at Risk project includes
communal groups in its sample that are politically active or“at risk”, based on two criteria:
(1) “the group collectively suffers, or benefits from, systematic discriminatory treatment
vis-a-vis other groups in a society”, or (2) “the group is thebasis for political mobilization
and collective action in defense or promotion of its self-defined interests”, the selection
process (being at risk) is probably related to most dependent variables that we might use
with MAR data.4 Therefore selection bias will be an issue for most research that uses MAR.

Here is a more specific example to illustrate why selection bias will be an issue. Assume we
have a dichotomous dependent variabley that measures whether an ethnic group engaged
in violent rebellion in a given year or not. Let us also assumethat this variable is partly a
function of group size, i.e. what proportion of a country’s population consists of members
of that group. The larger a group’s relative size, the more likely it is to engage in violent
rebellion against the state. Letx denote this variable. Furthermore, there is another dichoto-
mous variable,s, that measures whether a minority group was at risk in a givenyear or not.
Ordinarily, we would test for whether a relationship existsbetweenx andy by estimating a
probit regression where:

Pr(y = 1|x) = f (x,εY)

or the probability thaty = 1 is a function ofx as well as some stochastic error termεY.
To make it easier to illustrate the subsequent argument, let’s deal with the propensity of a
minority group to engage in violent rebellion instead, so that y∗, the propensity for violent
rebellion becomes a linear function ofx:5

y∗ = βY0 + βY1x+ εY (1)

3In fact, it probably is impossible to construct an exhaustive list of ethnic groups given how arbitrary (and fluid)
the concept is (Hug 2003, 269). Fearon (2003) and Chandra (2006) have nice discussions about the complexity
of an operational and conceptual definition of what constitutes and ethnic group. In any case, the implication is
thatall lists of ethnic groups probably suffer from some degree of selection bias.
4From the MAR website. <http://www.cidcm.umd.edu/mar/about.asp>. 15 February 2008.
5One can derive the probit (and logit) estimators exactly by thinking of some continuous latent variable that
measures the propensity of an ethnic group to engage in violent rebellion (King 1989, 110-115).
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However, we only observey andx for ethnic groups that are included in the MAR sample,
i.e. groups that are at risk. Lets be a dichotomous variable that denotes whether a group
is at risk or not, and as before, lets∗ be a latent variable that captures the propensity for
an ethnic group to be at risk. The selection problem comes into play because for most
dependent variables (and independent variables) that we can imagine using with MAR data,
the correlation withs will not be zero. Specifically, there are three potential sources of
selection bias that I can think of.

First, most independent variables that are related to our dependent variable of interest prob-
ably are also related to the likelihood that an ethnic group is at risk. In our example, ethnic
groups that are larger are more likely to engage in violent rebellion, but they are also more
likely to be included in the MAR sample because they are more likely to clear the population
threshold MAR requires for inclusion and because larger ethnic groups that are politically
active are easier to identify than smaller ethnic groups. This constitutes non-random se-
lection, but it is actuallynot a source of selection bias because we already includex in the
estimation ofy and thus in effect control forx’s role on the selection process (King, Keo-
hane and Verba 1994, 137). Thus casual inferences about other variables will not be biased
from this source. The next two problems, however, will bias causal inferences about other
variables.

Second, most dependent variables are probably also relatedto s, i.e. cor(y,s) 6= 0. Ethnic
groups that engage in violent rebellion are much more likelyto be considered at risk (one
would think they actually all are considered at risk given their population size exceeds the
MAR threshold of 500,000) than ethnic groups that do not, even once we take the effect of
group size ony into account.

Third, unobserved factors (that are captured in the error term εY) that make it more likely
thaty = 1 for an ethnic group with a given group size probably will also make it more more
likely that s= 1, i.e. that the group is observed in the MAR sample. In other words, the
error components of the selection process and of process that results iny are correlated.
With these three claims we can thus write the process that producessas:

Pr(s= 1|x,y) = f (x,y,εS)

Where cor(εY,εS) 6= 0. If we instead look at the propensity that an ethnic group isat risk,
s∗, this becomes:

s∗ = βS0 + βS1x+ βS2y∗ + εS

Note that we can substitute equation 1 fory∗:

s∗ = βS0+ βS2βY0 +(βS1 + βS2βY1)x+ βS2εY + εS (2)
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Thus even if the two error terms were not correlated by themselves, if s is a function of our
dependent variabley, the new error term ofs∗, which equalsβS2εY +εS, would be correlated
with the error term for the outcome equation,εY. Furthermore, equation 2 implies that as
long as cor(εY,εS) 6= 0 or βS2 6= 0, our dependent variabley will be correlated with the
selection mechanism based ons and the error terms for the outcome (y) and selection (s)
equations will be correlated.

Here is the reasoning for this claim. As a first step, let’s assume that there is some sort
of underlying latent propensity for minority groups to be atrisk that translates into the real
world binary outcome of a group being either “at risk” or ‘notat risk”, based on whether the
latent propensity is above or below some thresholdτ . For convenience let us also assume
that this thresholdτ is 0.6 MAR selects its sample of groups based on this propensity,
i.e. groups that have a value above 0 are part of the sample, groups with a propensity
value below zero are not part of the sample. If the dependent variable in a study was not
systematically correlated with this propensity for being at risk, the selection bias in MAR
would not present any problems. However, for most dependentvariables like engaging in
violent rebellion, protest, etc., we probably believe thatthe propensity for violent rebellion,
etc. is systematically correlated with the propensity of being at risk. Minority groups that
are at risk are more likely to engage in rebellion, etc., thangroups that are not at risk. For
such dependent variables, MAR selects a sample on the basis of a process that is correlated
with our dependent variable.

3 Effects of MAR selection bias

I have argued that the selection mechanism in MAR is correlated with most dependent vari-
ables we might use with it. King, Keohane and Verba (1994, 128-132) directly discuss the
effects of such selection bias: “any selection rule correlated with the dependent variable
attenuates estimates of causal effects on average” (emphasis in original). They proceed to
illustrate this claim with a figure that shows the effects of truncation based on the depen-
dent variable (King, Keohane and Verba 1994, Figure 4.1, 131). I have replicated a similar
figure that specifically illustrates the effect that selection on a variable (propensity of being
at risk) that iscorrelatedwith our dependent variable (propensity for violent rebellion) has
on estimates of the relationship between an explanatory variable and violent rebellion. The
simulations used to produce this figure also suggest that standard errors will be dispropor-
tionately increased after taking the reduced sample size into account. This latter claim is
explored in more detail further below.

Figure 1 shows a hypothetical world of minority groups. The x-axis shows some (uniformly

6We essentially do the same when we use probit and logit regression models since both can be derived from a
latent variable model, and whereτ is also assumed to be equal to 0.
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Figure 1: Selection Bias in Minorities at Risk
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distributed) explanatory variable that is continuous and ranges from 0 to 10. The y-axis
shows the propensity for being at rebellion.7 Minority groups that are above 0 on this
latent propensity are engaged in violent rebellion, all others are not. The black and grey
dots show individual observations and constitute the full population of minority groups in
this example. In the full population, the explanatory variable is positively related to the
propensity for violent rebellion, albeit with a normally distributed error term (ε ∼ N(0,1)).
The dashed line shows this relationship (or one could run a regression of the propensity for
violent rebellion on the explanatory variable).

Now let’s introduce a selection mechanism. The black dots show the sample that is drawn
from the full population of minority groups after we select from another variable, the
propensity for being at risk, that is correlated with the propensity for violent rebellion
(cor=0.8). The solid line shows the estimated relationshipbetween the explanatory vari-
able and the propensity for violent rebellion in the new (systematically biased) sample. The
coefficient estimate in the (biased) sample is weaker (closer to zero) than the ‘true’ coeffi-
cient in the full population of minority groups. Thus a statistical test of the hypothesis that
the explanatory variable is positively related to the (propensity for) violent rebellion would

7One could do what I am about to do just as well with a binary dependent variable, but it is graphically a lot
clearer when we use the the latent propensity instead.
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be harder to meet in the selected sample than in the full population.

Figure 2: Coefficient and Standard Error distributions for MAR scenario.
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Repeating the process of random draws that was used to generate figure 1 does not change
the main conclusion that coefficient estimates in the sampleselected from a process that is
correlated with the propensity for violent rebellion will be systematically weaker (biased
towards zero) than those in the full population. To substantiate this claim, figure 2 shows
the distribution of coefficient estimates and standard error estimates for the sample and full
population that I obtained after repeating the process usedto generate figure 1 several thou-
sand times. The first figure on the top left shows the distributions of coefficients for the
full population and sample respectively. Since each iteration of the simulated data produces
both a full population and sample coefficient that are uniqueto that iteration, just looking
at the distribution of coefficients after several thousand iterations is potentially misleading
(since it assumes that each coefficient pair for a sample and full population is independent
from each other). Therefore the second graph on the top rightof figure 2 shows a distri-
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bution of the difference between the population and sample coefficients. Negative values
indicate that the sample coefficient was smaller than the population coefficient. While in a
few cases the sample coefficient was larger than the population coefficient, in most itera-
tions the sample coefficient was smaller than the populationcoefficient given the selection
processed outline above.

The bottom two graphs in figure 2 show the corresponding information for the standard
errors of each coefficient estimate. In this case, the standard errors for the sample were
larger than the population standard errors in every single iteration.

Since we should expect standard errors to be larger in a sample due to the lower number of
observations anyways, I also conducted some simulations tosee whether standard errors in
samples of the same size from a population of the same size were different depending on
whether the selection process was random or correlated withthe dependent variable.

Figure 3 shows the resulting distributions of coefficients and standard errors. The two
graphs on the top show the coefficients and standard errors from the sample and full pop-
ulation when the correlation between the the dependent variable and selection process is
larger than 0. The two graphs on the bottom show the same for the situation where the cor-
relation is 0, i.e. in the case where the sample consists of observations that were randomly
selected from population. The population of simulated datawas of equal size in both cases
and the sample size for both instances is on average the same as well. As a comparison of
the two graphs on the rights shows, while standard errors arealways larger in the samples
drawn from the full population, they are still slightly larger, on average, when the selection
process is positively correlated with the dependent variable. Thus it seems that the standard
errors in a sample that suffers from selection bias might be unduly large after accounting for
the increase in standard errors due to the smaller number of observations used to estimate a
regression.8

4 Conclusion

These simulations support the claim by King, Keohane and Verba (1994) and others that
selection on a process positively correlated with the dependent variable of interest will bias
causal inferences (i.e. coefficient estimates) towards zero, thus making standard hypothesis
tests harder to meet. Furthermore, the simulations suggestthat there are two reasons for
this. First, the selection process outlined here will weaken relationships that exist in the
full population and bias them towards zero in the sample of ethnic groups in MAR. This
is exactly the point made by King, Keohane and Verba (1994, 129-132) in regard to se-

8I imagine this might depend heavily on what the data look like. In this case, we know that there is a linear
relationship betweenx andy with a normally distributed error term. This probably will rarely be the case in
real world data.
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Figure 3: Coefficient and Standard Error distributions under nonrandom and random se-
lection.
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lection related to the dependent variable. Second however,the selection process may also
inflate standard errors disproportionately in relation to the reduction in sample size (i.e. the
increase in standard errors purely due to the lower number ofobservations in the sample).9

Since standard hypothesis tests rely on the ratio of coefficients to standard errors, the type of
selection process likely to occur in MAR thus biases causal inference towards a null finding
in two ways, by reducing coefficient magnitudes, and by increasing standard errors.

Using just current MAR data, empirical analyses are more likely to reject hypothesis that
are empirically supported in the full population. This implies that any statistical relation-
ships that do occur in the MAR sample of ethnic groups should be generalizable to the

9Given the assumptions about the distribution of the error term I made in the simulations here.
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full population of ethnic or minority groups in the world. Ofcourse it also implies that
there may be some relationships that exist in the full population but fail to meet standard
hypothesis tests within the MAR sample.

5 Appendix

5.1 How figure 1 was produced

1. Draw 250 observations from a uniform distribution to generatexand the same number
from a normal distribution to generateεY andεS, where cor(εY,εS) = 0.25.

2. Generate the propensity for violent rebellion with the functiony∗ = βY0 + βY1x+ εY.

3. Generate the propensity for being at risk with the function s∗ = βS0+βS1x+βS2y∗ +
εS.

4. Estimate the relationship betweenx and propensity for violent rebellion in the full
population (dashed line).

5. Drop observations that have a propensity for being at riskthat is below zero (grey
dots;y∗ ≤ 0).

6. Reestimate the relationship between the explanatory variable and propensity for vio-
lent rebellion (solid line).

5.2 How figures 2 and 3 were produced

1. Draw 2500 observations from a uniform distribution to generatex and the same num-
ber from a normal distribution to generateεY andεS, where cor(εY,εS) = 0.25.

2. Generate the propensity for violent rebellion with the functiony∗ = βY0 + βY1x+ εY.

3. Generate the propensity for being at risk with the function s∗ = βS0+βS1x+βS2y∗ +
εS.

4. Estimate the relationship betweenx and propensity for violent rebellion in the full
population using probit.

5. Reestimate the relationship between thex and propensity for violent rebellion when
y∗ > 0 using probit.

6. Save desired quantities.

7. Repeat starting at (1) for 5000 iterations.
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5.3 Some disclaimers

Some preliminary cautions or ideas (i.e. stuff that needs more work):

1. If the error term is normally distributed in the full population, then drawing a biased
sample will also lead to heteroscedasticity, i.e. the variance of the error term will not be
constant anymore.

2. To what extent the selection bias is a problem depends on how highly correlated the
selection process is with the dependent variable. In this example, the correlation is fairly
high, but lower correlations will mitigate the problems of selection bias.

5.4 Additional filesseletionbias.do - STATA do file to replicate the figures.seletionbias.txt - Log file for the do file above.
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