predict
and related methods for class “spdur
”.
Arguments
- object
Object of class “
spdur
”.- newdata
Optional data for which to calculate fitted values, defaults to training data.
- type
Quantity of interest to calculate. Default conditional hazard, i.e. conditioned on observed survival up to time
t
. See below for list of values. Forresiduals
, the type of residual to calculate- truncate
For conditional hazard, truncate values greater than 1.
- na.action
Function determining what should be done with missing values in newdata. The default is to predict NA (
na.exclude
).- ...
not used, for compatibility with generic function.
Value
Returns a data frame with 1 column corresponding to type
, in the same
order as the data frame used to estimate object
.
Details
Calculates various types of probabilities, where “conditional” is used in
reference to conditioning on the observed survival time of a spell up to
time \(t\), in addition to conditioning on any variables included in the
model (which is always done). Valid values for the type
option
include:
“conditional risk”: \(Pr(Cure=0|Z\gamma, T>t)\)
“conditional cure”: \(Pr(Cure=1|Z\gamma, T>t)\)
“hazard”: \(Pr(T=t|T>t, C=0, X\beta) * Pr(Cure=0|Z\gamma)\)
“failure”: \(Pr(T=t|T>t-1, C=0, X\beta) * Pr(Cure=0|Z\gamma)\)
“unconditional risk”: \(Pr(Cure=0|Z\gamma)\)
“unconditional cure”: \(Pr(Cure=1|Z\gamma)\)
“conditional hazard” or “response”: \(Pr(T=t|T>t, C=0, X\beta) * Pr(Cure=0|Z\gamma, T>t)\)
“conditional failure”: \(Pr(T=t|T>t-1, C=0, X\beta) * Pr(Cure=0|Z\gamma, T>t)\)
The vector \(Z\gamma\) indicates the cure/at risk equation covariate vector, while \(X\beta\) indicates the duration equation covariate vector.
Note
See forecast.spdur
for producing forecasts when future
covariate values are unknown.
Examples
# get model estimates
data(model.coups)
ch <- predict(model.coups)
head(fitted(model.coups))
#> [1] 0.016552005 0.005726432 0.003026371 0.002446806 0.016492801 0.036707531
head(residuals(model.coups))
#> 5007 5006 5570 5039 4751 4877
#> -0.016552005 -0.005726432 -0.003026371 -0.002446806 -0.016492801 -0.036707531