Research

My Google Scholar profile.

Peer-reviewed publications

  • Fred Morstatter, Aram Galstyan, Gleb Satyukov, Daniel Benjamin, Andres Abeliuk, Mehrnoosh Mirtaheri, KSM Tozammel Hossain, Pedro Szekely, Emilio Ferrara, Akira Matsui, Mark Steyvers, Stephen Bennet, David Budescu, Mark Himmelstein, Michael Ward, Andreas Beger, Michele Catasta, Rok Sosic, Jure Leskovec, Pavel Atanasov, Regina Joseph, Rajiv Sethi, Ali Abbas. 2019. “SAGE: A Hybrid Geopolitical Event Forecasting System”. Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence Demos: 6557-6559. https://doi.org/10.24963/ijcai.2019/955

  • Andreas Beger and Daniel Hill, Jr. 2019. “Examining repressive and oppressive state violence using the Ill-Treatment and Torture data”. Conflict Management and Peace Science 36(6): 626–644. https://doi.org/10.1177/0738894219882352, GitHub

  • Kentaro Fukumoto, Andreas Beger, and Will H. Moore. 2019. “Bayesian modeling for overdispersed event-count time series”. Behaviormetrika 46: 435–452. https://doi.org/10.1007/s41237-019-00093-5

  • Shana Scogin, Johannes Karreth, Andreas Beger, and Rob Williams. 2019. “BayesPostEst: An R Package to Generate Postestimation Quantities for Bayesian MCMC Estimation”. Journal of Open Source Software. https://doi.org/10.21105/joss.01722

  • Andreas Beger, Daniel W. Hill, Jr., Nils. W. Metternich, Shahryar Minhas and Michael D. Ward. 2017. “Splitting It Up: The spduration Split-Population Duration Regression Package for Time-varying Covariates”. The R Journal 9(2): 474-486. https://doi.org/10.32614/RJ-2017-056

  • Michael D. Ward and Andreas Beger. 2017. “Lessons from near real-time forecasting of irregular leadership changes”. Journal of Peace Research 54(2). https://doi.org/10.1177/0022343316680858, Appendix, GitHub

  • Andreas Beger, Cassy L. Dorff, and Michael D. Ward. 2016. “Irregular Leadership Changes in 2014: Forecasts using ensemble, split-population duration models”. International Journal of Forecasting 32(1): 98-111. https://doi.org/10.1016/j.ijforecast.2015.01.009, Ungated, GitHub

  • Andreas Beger, Cassy L. Dorff, and Michael D. Ward. 2014. “Ensemble Forecasting of Irregular Leadership Changes”. Research & Politics 1(3). https://doi.org/10.1177/2053168014557511, Ungated, GitHub

Other publications

  • Morgan, Richard, Andreas Beger, and Adam Glynn. 2019. “Varieties of Forecasts: Predicting Adverse Regime Transitions”. V-Dem Working Paper 2019:89. Available at SSRN: https://ssrn.com/abstract=3389194 or http://dx.doi.org/10.2139/ssrn.3389194

  • Andreas Beger, Cassy L. Dorff, and Michael D. Ward. 2014. “Irregular Leadership Changes in 2014: Forecasts using ensemble, split-population duration models”. http://arxiv.org/abs/1409.7105.
    This is a 59 page technical report written for the Political Instability Task Force.

Manuscripts

Unpublished papers that I am not further working on:

  • “Precision-recall curves”. 2016. PDF, http://ssrn.com/abstract=2765419
    For rare outcomes (*cough*, a lot of IR), ROC curves and the area under them are not a great measure of model fit. Look at (the area under) precision-recall curves as well.

  • “Using front lines to predict deaths in the Bosnian civil war”. 2012. PDF
    To be useful for forecasting and prediction, a statistical model needs to be feasible given the data it requires. This paper examines the relationship between front lines and other, time-invariant variables, and killings during the Bosnian civil war from 1992 to 1995. It uses a Bayesian spatial count model to estimate and compare model fit to other, more established conflict models. One of the dissertation papers.

  • “Explaining and predicting interstate war deaths”. 2012. PDF, http://ssrn.com/abstract=2765421
    This paper is about predicting interstate war battle deaths. Data on 89 interstate wars between 1815 and 1991 is used to estimate a truncated regression model that provides the basis for out-of sample forecasts for two other wars. Also a dissertation paper.

  • “Predicting the intensity and location of violence in war”. 2012. PDF
    My three-papers-wrapped-together Ph.D. dissertation.

  • “Simulating the Effects of Selection Bias in the Minorities at Risk Project”. 2008. PDF
    How much of a problem is it that the Minority at Risk project collects information only for ethnic groups that are “at risk”, i.e. selection on the dependent variable?